If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-4c=0
a = 3; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*3}=\frac{0}{6} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*3}=\frac{8}{6} =1+1/3 $
| -9+2(1-8s)=-18 | | 4x-42=10 | | 11-(8p+3)=9(2p-5) | | −4x+17=41 | | 5g-9=-16 | | -18=8+7(b-9) | | 11-8p+3)=9(2p-5) | | 16+5t=6-5t | | 5(7a-4)=-33 | | 4-(8p+3)=9(2p-5) | | 3x+¹=27 | | 23+3(4x-15)=-4-6x | | -x+60+-x+60=122 | | 10y+y+5=16 | | 3k+5+4k=-26 | | 16x-8=-2+21x+46 | | 122=-x+60 | | 0=16x+88 | | 13x-22=56 | | 16x-8=-2x+21+46 | | 8-5x=10.5 | | 4x-26=3x-16 | | 13m+8=5 | | -2(8-5d)=-26 | | -2+21x=16x-8+46 | | -1+6p=6p | | 13m+5=8 | | -8=1/4b | | 3(t–3)=5(2t+1) | | -g-g=-2g | | x+4.5=25 | | 24=-2(3z-8) |